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We present a theory of radical-molecule abstraction reactions based on the crossing of reactant ground and
ionic states at the transition state. By calculating the evolution of ground- and ionic-state energies as the
reactants approach each other, we are able to specify the boundary conditions for an avoided curve crossing
problem as the atom is transfered. The lower the ionic-state energy, the lower in energy the transition state
will be. This drives strong correlations between barrier heights and the difference of ionic- and ground-state
energies. This theory successfully explains the evolution of barrier heights in a series of reactions involving
alkanes and several radicals (OH, O, H, F, Cl, Br), in which barriers range from 0 to 10 kcal/mol. A
perturbation treatment of the ionic- and ground-state energies improves the performance of the theory. We
compare predicted curve-crossing heights with observed barriers for both our theory and for the covalent
(singlet-triplet) curve-crossing theory. We also compare observed barriers with reaction enthalpy. Only
the ionic curve-crossing theory can simultaneously explain both radical and molecule reactivity.

Introduction

Chemical reactivity, the role of fundamental mechanisms that
dictate the kinetics of chemical transformations, is central to
developments in modern chemistry across a range of emerging
disciplines. A particularly important class of these reactions
involves radical-molecule pairs. These reactions draw attention
both because of their involvement in the rate-limiting steps of
mechanisms controlling DNA repair, aging processes in organ-
isms, catalytic destruction of ozone, etching of microcircuits,
photochemical oxidant formation, combustion, etc., and because
they span many orders of magnitude in reaction probability per
collision. Thus they are of considerable practical and theoretical
interest.
An understanding of radical-molecule reactivity currently

emerges from three distinguishable perspectives. The first is
through direct observation. Notable examples for radicals
include flash photolysis,1-3 crossed molecular beams,4-6 and
discharge flow.7-12 The second is through electronic structure
calculations that are used to calculate reaction potential energy
surfaces, including barrier heights, using increasingly appropriate
Hamiltonians and very large basis sets.13-15 The third is through
the use of molecular orbital analysis, a pursuit that involves
frontier orbitals, avoided curve crossings, delocalization, electron
promotion, selected electronic structure calculations, etc., with
an eye on understanding specific mechanisms that dictate barrier
heights, entropic constraints, etc.16-20

Our objectives in this paper are born of a need to develop a
context within which we can both understand and predict the
reactivity of radical-molecule combinations involving elec-
tronically complex systems containing, for example, sulfur,
chlorine, bromine, iodine, oxygen, carbon, and nitrogen. We
seek connections between the structure of reactants (including
symmetry, virtual states, available orbitals, polarizability,
electron affinity, etc.) and the enthalpic and entropic barriers
to reaction. Connections between reactant wave functions,
product wave functions, and wave functions describing the

transition state are sought such that each may be understood in
its own right and that their relationship can be used to pose
boundary value problems that test which surface or surfaces
control the reaction probability. A framework for understanding
this important class of reactionssa framework for testing
hypothesis against observationssmust satisfy the following
criteria: (a) it must provide a link between the structure of
reactants, the structure of products, and a prediction of barrier
heights for radical-molecule combinations involving complex
substituents, (b) it must diagnose reactivity trends within a
homologous series, a series of a single molecule reacting with
a manifold of radicals as well as a single radical reacting with
a manifold of molecules, (c) it must differentiate between direct
and indirect reactions, capturing the propensity of radical-
molecule reactions to exhibit multiple transition states, (d) it
must be reversible; the reverse reaction shares a common
transition state (or series of transition states) with a barrier (or
barriers) higher or lower by the reaction enthalpy, and (e) it
must facilitate the use of electronic structure calculations of
tractable scope by establishing a coordinate system that isolates
the mechanisms fundamental to barrier height control.
In this paper we present a theory of radical-molecule

reactivity drawn from two of the three perspectives noted
above: the use of direct observations and the use of molecular
orbital analysis. We present a context defining barrier height
control based on the proposition that the total wave function at
the transition state, constrained by the Pauli exclusion principle,
demands involvement of an excited state,16,19 into which an
electron must be promoted to enable a reaction. We argue that
for a large set of gas-phase radical-molecule reactions, the state
into which the electron is promoted is an ionic state. Thus,
radical-molecule barrier heights are controlled by the interac-
tion of the ground state and an ionic state of the reactants. For
atom-transfer reactions the abstraction barrier is an avoided
curve crossing of these two configurations as the atom is passed
from one radical to the other. The height of the curve crossing
is directly and easily related to the ionic energy of the separated
reactants (IP-EA of the molecule and radical).* Corresponding author.
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Our conviction that the ionic surface plays a controlling role
in most radical-molecule reactions is based on experimental
evidence and in particular on the failure of reaction enthalpy
correlations to provide empirical insight into reactivity. Many
systems show the influence of the ionic-state energy on the
reaction coordinate. Correlations of reactivity with molecular
ionization potential are well established,10,21while over the years
work from this lab has demonstrated the role of radical electron
affinity and the wide applicability of an empirical IP-EA
reactivity trend with systems including radical reactions with
halogen molecules22 and Cl atom transfer from ClNO.23

Theoretical treatments of radical-molecule reactivity em-
phasize the role of covalent interactions in covalent reactions
and almost universally begin the problem by considering the
energetics associated with breaking and forming bonds. It has
been clear since the work of London24 that avoided curve
crossings control atom-transfer barriers. Subsequent
treatments,20,25-29 for the most part have been based on a
valence-bond model of the breaking and forming bonds. Earlier
work focused on the role of reaction enthalpy as a governor of
barrier heights, while more recent treatments are based on the
energetic splitting between bonding and antibonding states in
breaking and forming bonds. The valence-bond models20 do
recognize a role for ionic states in the configuration mixing (the
avoided crossing) stabilizing the barrier, but the ionic contribu-
tion is treated as a perturbation. We contend that the data,
however, indicate that the ionic interaction is first-order, with
other factors (reaction enthalpy, etc.) acting as perturbations.
This is more than an academic issue. It affects how one

thinks about chemical reactivity and affects the order in which
one confronts possibly important reactions in complicated
chemical systems, such as those mentioned in the opening
paragraph. If one considers reaction enthalpy to be the driving
force of barrier control, one rapidly makes serious errors in
estimating radical reactivity; for example, N atoms should be a
major sink for atmospheric ozone. Changing one’s perspective
to the singlet-triplet splittings in these systems does little to
solve the problem, while focusing on the ionic properties of
the radicals and molecules provides the correct insight.

Theories of Barrier Height Control

We shall examine three theories of radical-molecule reactiv-
ity, focusing in particular on how reaction barrier heights vary
from reaction to reaction. Our goal is to identify a critical
intersection between these theories and experimental observa-
tions in order to test their predictive power. Each theory seeks
to relate properties of the separated reactants to the barrier
height, and they are differentiated by what is considered the
most important controlling property (reaction enthalpy, the
splitting between bonding and antibonding states, and the
splitting between neutral and ionic states). We shall focus on
direct atom-transfer reactions of the basic form

where the breaking and forming bonds are essentially two-
electron covalent bonds. These reactions reduce to a three-
electron problem and constitute the simplest form of radical-
molecule reactions. Our figure of merit will be the ability to
predict variations in reactivity at the lowest level of perturbation.
We stress, however, that our approach is appplicable to a far
broader domain than H atom abstraction.
Avoided Curve Crossings. Without question, potential

barriers along an atom-transfer reaction coordinate correspond
to curve crossings.30,31 Before treating the specifics of the

theories, we shall present the simple geometric result for the
curve-crossing height and resonance energy.20 We assume that
the diabatic-state energies evolve linearly over an extended
distance in order to simplify the problem. Though such a drastic
assumption clearly affects the absolute crossing energies, it will
not significantly influence the trends in those energies, except
for a multiplicative constant. The crucial concept is to relate
properties of the separated reactants and products to boundary
conditions of the curve-crossing problem. The critical param-
eters are the energy gaps for the reactants and products (∆ER
and∆EP ) and the enthalpy of the reaction,∆H. As shown in
Figure 1, the curve-crossing energy will be

For systems with similar wave functions but different energy
gaps, the resonance energy splitting the two adiabatic curves
(B ) 〈ΨP|Ĥ|ΨR〉) at the crossing point will be roughly
proportional to the crossing height (B ) âEX ∝ Ex〈ΨP|ΨR〉).
Therefore, we expect the adiabatic reaction barrier to be
proportional to the crossing height.

In this paper we shall compare predicted curve crossing heights
to measured activation energies; the resulting slope will be a
measure of the coupling strength,â.

For most systems, the energy gaps are much larger than the
reaction enthalpy. They also tend to vary more from system to
system. Therefore, the excited-state energies and not the
reaction enthalpy should be the more important controlling
factors. Furthermore, the crossing height is essentially the
geometric mean of the gaps, so the lower energy gap dominates
the crossing energy.
Marcus Theory. By far the most familiar theory of barrier-

height control originated with Evans and Polanyi;25 the essential
picture is that an atom-transfer barrier is found at the intersection
of two potential curves corresponding to a breaking and a
forming bond. Barrier heights vary proportionally with the
reaction enthalpy. The most widely used form of this theory
was developed by Marcus, first for electron-transfer reactions
in weakly coupled systems,27 but later for strongly coupled

AH + B f A + BH (1)

Figure 1. Geometry of curve-crossing problem.∆ER is the reactant
energy gap,∆EP is the product energy gap, and∆H is the reaction
enthalpy. The reaction coordinaterX is 0 at the midpoint of a symmetric
reaction. The interaction of the two diabatic wave functionsψR and
ψP produces a splitting,B ) âEX, which stabilizes the transition state.

EX )
∆ER(∆EP + ∆H)

∆ER + ∆EP
(2)

Eb ) (1- â)EX (3)

∂Eb/∂EX ) (1- â) (4)
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systems, including atom-transfer reactions.28 The model, de-
picted in Figure 2a, is clear: reactants and products are modeled
with harmonic potentials, and the reaction barrier corresponds
to the crossing of two parabolic surfaces, one for the reactants
and one for the products, along a generalized reaction coordinate.
When the systems are weakly coupled, the barrier is the curve-
crossing energy itself, while, when the systems are strongly
coupled, as with radical-molecule reactions, the barrier is
lowered by the coupling energy.
The essential characteristic of Marcus theory is that the barrier

is assumed to depend on a single extrinsic parameter: the free
energy release, which is the "motive force" of the reaction.

whereEAB is the barrier for the reaction in eq 1,∆E0 is the free
energy release, andE is the average of the (intrinsic) barriers
for the two corresponding identity reactions:

The presence of the intrinsic barrier makes Marcus theory
relatively difficult to test. However, the general principle stated
by Evans and Polyani25 is easy to test; changes in barrier heights
should be proportional to changes in reaction enthalpy as long
as the central atom remains the same.
Covalent Curve Crossings. The second theory originates

in the valence-bond formalism presented by London, which has
been extended to describe a wide range of chemical sys-
tems,13,20,29,32including hydrogen atom transfers. This theory
recognizes the critical role of excited electronic states in forming
the reaction barrier and treats their evolution along the reaction

coordinate. For neutral atom-transfer reactions like eq 1, the
problem reduces conceptually to a three-electron problem
involving doublet surfaces (one unpaired electron). However,
the states participating in the avoided curve crossing correspond
to the molecular singlet and triplet states when the radical species
are far from the molecule. The antibonding triplet state of the
reactant molecule correlates with the radical doublet to form a
bonding singlet state in the product molecule, and vice versa
(1AH f 3BH, 3AH f 1BH). The ionic, or transferred, electronic
states are treated as perturbations to the fundamental interaction.
The formalism itself is complete and general and, as such, will
describe all chemical systems. We shall focus here on the
specific simplification that the singlet-triplet curve crossing
describes the zero-order behavior of neutral reactions, also called
spin-transfer reactions.20,32

Because both fundamental states are neutral, their energies
remain essentially unchanged as the reactants approach until
significant overlap develops between the orbitals of the two
reactants. After this, the energies evolve rapidly. Several useful
approximate treatments allow us to write a zero-order expression
for the curve-crossing height. The functional form first
presented by Sato26 for H2 was extended by Garrett and Truhlar33

to a series of H atom transfer reactions. In this form, the
singlet-triplet energy gap is

where∆ is an overlap term generally slightly less than 0.2. For
∆ = 0.2, the gap is approximatelyEST = 2D0. However, the
appropriate energy gap for the curve-crossing problem is34

From this we can easily obtain from eq 2

The theory thus predicts a strong dependence of barriers on
the reactant molecule bond strength, with a secondary depen-
dence on the product molecule bond strength. The dependence
on the product bond strength is somewhat damped because the
product energy gap partially compensates for changes in product
bond strength; stronger bonds also have larger singlet-triplet
splittings, so the product boundary conditions are anticorrelated.
Variations in the singlet-triplet splitting from the simple form
in eq 8 constitute a perturbation to the zero-order behavior
described here.
Ionic Curve Crossings. Here we present a theory in which

an ionic surface interacts with the neutral ground state surface
for both reactants and products, corresponding to Figure 2c.
This theory has its origins in the harpoon mechanism,4 which
describes reactions where the ionic surface crosses the ground
state at an extended impact parameter (r ∼ 7 Å), leading to the
formation of an ionic collision complex and a very large
collisional cross section. While the role of the ionic surface in
harpoon reactions is well established, the ionic configuration
enters into the covalent model presented above only as a
perturbation. We hold the opposite view; in many cases the
ionic surface couples most strongly with the ground-state surface
of the reactants (and products), and the molecular triplet

Figure 2. Contrasting pictures of atom-transfer barriers. (a) Marcus
theory. The reaction coordinate is modeled as two intersecting parabolic
surfaces, with the barrier depending on the enthalpy of reaction and an
intrinsic barrier defined by corresponding (thermoneutral) identity
reactions. (b) Covalent (Heitler-London) avoided curve crossing. The
barrier depends on the singlet-triplet gaps of the breaking and forming
covalent bonds. Rapid evolution of the energies begins when orbital
overlaps become significant. (c) Ionic avoided curve crossing. The
barrier depends on the ionic (electron-transfer) energy of the reactants
and products. The ionic energies evolve ase2/r in the far field.

EAB ) E(1+ ∆E0/E)2/4 (5)

E) (EAA + EBB)/2 (6)

EST ) 5- ∆
2(1+ ∆)

D0 (7)

∆E) 0.75EST = 1.5D0 (8)

EX )
1.5D0R(0.5D0P+ D0R)

1.5D0R +1.5D0P

)
(D0R + 0.5D0P)

1+ D0P/D0R
(9)
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configuration appears as a perturbation. We shall show that
this leads to a profoundly different way of thinking about radical
molecule reactivity than the paradigms based on either reaction
enthalpy or singlet-triplet splitting.
The zero-order ionic curve-crossing model is easily described.

The initial ionic-state energy is roughly equal to the (smaller)
difference in ionization potential and electron affinity of the
two reactants. As the reactants approach, the ionic surface drops
in energy according to a simple Coulombic potential, i.e.EI =
IP - EA - e2/r. After significant overlap develops between
the reactant wave functions, the simple asymptotic behavior of
the energies breaks down and the reaction complex becomes a
single species characterized by a molecular wave function. Here
we assume that the two lowest energy doublets associated with
this complex establish the boundary conditions for a curve
crossing such as the one shown in Figure 1 (AH+ B f BH+

+ A-, AH+ + B- f BH + A). The linear curve-crossing
problem (eq 2) is thus

where the ionization energy IE) IP- EA, and the Coulombic
term (to zero order)Ei ) e2/r. At this order, we must choose
a typical interaction distance for the boundary condition. The
zero-order interaction distance is the separation between the
heavy centers (R and X) at the transition state. It is typically
constant for a given radical but varies slightly from radical to
radical depending on the size of the frontier orbital (SOMO) of
the radical.

Testing the Theories

The three theories under consideration all represent zero-order
conceptual pictures of chemical reactivity. Each is an ap-
proximation to the true behavior, and all will converge at higher
order. For instance, Marcus theory and the valence-bond picture
are closely related, and the singlet-triplet and ionic curve-
crossing theories represent different choices about what to regard
as a zero-order interaction and what to regard as a perturbation.
However, they lead to very different perceptions of reactivity
and barrier-height control. We must choose both a method of
comparison and a set of reactions to use as a test case.
Choosing a System.We shall compare the theories for an

important set of reactions: hydrogen atom transfers from an
alkane to an attacking radical. We choose this set because these
reactions play a critical role in organic chemistry, combustion,
and atmospheric chemistry and because this system has been
treated in the context of the first two theories, by Marcus28 for
Marcus theory and by Pross35 for the valence-bond curve-
crossing theory. Also, the experimental data set is large. Our
analysis of the available data is presented in the Appendix.
It is critically important to treat reactions involving both a

series of alkanes and a series of radicals, as the three controlling
properties under consideration (reaction enthalpy, singlet-triplet
splitting, and ionic-state energy) are strongly correlated for the
alkanes. This is illustrated in Figure 3, which compares the
ionization potential and bond strength of a series of alkanes.
Any simple correlation treatment of reactivity exploring only a
series of alkanes will therefore perform equally well for any of
the three theories. The situation is far different, however, when
one compares radical electron affinities with radical-hydride
bond dissociation enthalpy (Figure 3b). Here the correlation
breaks down entirely; for one sequence, the halogens, the
electron affinity remains constant while the bond strength varies

by 2 eV, whereas for another (H, O, Cl), the bond strength
remains constant while the electron affinity varies by 2 eV.
There is, however, one significant difference between the

ionization potential and the bond strengths; the absolute variation
in ionization potential is more than a factor of 5 greater than

EX )
(IER - ER

i )(IEP - EP
i + ∆H)

((IER - ER
i ) + (IEP - EP

i ))
(10)

Figure 3. (a) Correlation between ionization potentials and bond
dissociation enthalpies for a series of alkanes. The range in ionization
potentials is∼3 eV, while the range in bond strengths is∼0.6 eV. The
open symbols surrounding methane (circle), ethane (square), propane
(diamond), and cyclohexane (hexagon) will be used throughout the
paper to identify these species. (b) Relationship between electron
affinities of radicals and the bond dissociation energies of the associated
hydrides. Note in particular that EA for the halogens remains essentially
constant as the hydrideD0 changes by 2 eV, while the EA for the series
(H, O, and Cl) varies by 2 eV as the associatedD0 stays constant. The
color and symbol shape identifying each radical will be used throughout
the paper.
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that in bond strength, and even the fractional variation is more
than a factor of 2 greater. The reason is that the ionization
potential is a molecular property, so it is possible to ionize larger
alkanes by removing an electron from the highest occupied
molecular orbital (HOMO) while leaving the much more tightly
bonding electron density of the lower lying orbitals essentially
intact. This represents an essential and testable difference
between a molecular-orbital construction of the reactants and a
valence-bond construction. Therefore, we shall also be able to
compare the fractional change in predicted crossing heights with
the fractional change in observed barriers as a secondary figure
of merit as we test these theories.
Marcus Theory. In the paper extending Marcus theory to

tightly coupled systems,28Marcus uses hydrogen atom transfers
to test the theory. The test is, however, a comparison of BEBO
calculations with eq 5. Predictions of both theoretical treatments
agree modestly well with one another but fail to reproduce
observed trends. Explicit testing of Marcus theory is challenging
because it requires measurements of symmetric cross reactions;
however, it has been done. Kreevoy and Truhlar36 showed that
the observed rate of the OH+ HCl reaction is inconsistent with
constraints provided by the cross reaction H+ H2 and Cl+
HCl, while Dubey et al.37 recently measured the symmetric
reaction OH+ H2 O f H2O + OH and found that eq 5 was
unable to predict the observed variation in barrier heights for a
series of H atom transfer reactions.
In Figure 4, we compare observed barrier heights with

reaction enthalpy. While there is a strong correlation within
each homologous series involving a single radical, there is no
correlation between reaction enthalpy and radical reactivity. For
instance, barriers for X+ ethane (connected with a dashed line
in this and subsequent figures) go from nearly 5000 K for H to
essentially 0 for Cl without any change in reaction enthalpy.
They remain small (∼200 K) for Br (for the reverse reaction
ethyl + HBr) in spite of a 10 kcal/mol change in reaction
enthalpy, then rise slightly to∼ 1000 K for OH, though the
reaction is fully 20 kcal/mol exothermic. Reaction enthalpy,
by itself, cannot explain radical reactivity for H atom transfer,
and the failure is by no means unique to this system. For

example, an examination of O atom transfer from ozone yields
a similar result.
Covalent Curve Crossings. The singlet-triplet theory for

barrier-height control in these reactions was treated by Pross et
al.35 As in the previous case, the authors compared a model
with a computational result: in this case singlet-triplet splitting
with electronic structure calculations (in most cases MP2/6--
31G* //UHF/6--31G computations). The comparison between
the singlet-triplet model and the ab initio calculations is
satisfactory, but it does not stand up to the test of observations.
The electronic structure calculations are neither accurate (barriers
are up to a factor of 10 in error) nor precise (the fractional
changes in barrier heights are much smaller than those observed,
and reaction enthalpies are far off, by 16 kcal/mol in the case
of methane+ H f methyl + H2). The authors conclude,
however, that the singlet-triplet curve-crossing model explains
the calculated variation in both symmetric RH+ R reaction
barriers and RH+ H reaction barriers. To describe the
calculated RH+ Cl barriers, they include a significant perturba-
tion from an ionic configuration.
Consider, however, a quantitative comparison with observa-

tions. In Figure 5 we compare observed barrier heights with
the curve-crossing energy calculated using eq 9. Much as in
the previous comparison, the calculation reasonably reproduces
the observed trends for reactions involving a single radical, but
fails to describe reactivity of a molecule with a series of radicals.
In fact, the correlation is worse than before because eq 9 is
relatively insensitive to the properties of the attacking radical.
The radical enters into the theory only in the context of the
bond being formed. If the properties of that forming bond do
not change from one radical to the next, the predicted barrier
height will not change. This is inconsistent with observations.
A second problem can be seen by examining the changes of
both barriers and crossing heights; both are of order 0.5 eV, so
the slope of barrier height vs crossing height (to the extent that
there is one) is of order 1:1, implying very weak coupling. Also,
the entire range of barrier heights is compressed into a very
small range of curve-crossing heights (0.5 eV in 3 eV).
Ionic Curve Crossings. Finally, we turn to the ionic curve-

crossing theory. In Figure 6 we compare observed barrier

Figure 4. Observed barrier heights vs reaction enthalpy. Symbols
identify reactions as in Figure 3. Barriers for a series of alkanes reacting
with one radical form a trend, but there is no correlation between
reaction enthalpy and radical reactivity, for instance for radicals reacting
with methane (open circle, solid line) and ethane (open square, dashed
line).

Figure 5. Observed barrier heights vs calculated singlet-triplet curve-
crossing energies. Symbols identify reactions as in Figure 3. The
experimental barrier heights correlate with the singlet-triplet gap for
a series of alkanes reacting with one radical, but not at all for a series
of radicals reacting with a single alkane.
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heights with the ionic curve-crossing energy calculated using
eq 10. To produce this plot, we use a typical XH distance of
2.5 Å. This theory clearly captures the first-order behavior of
the entire series of reactions. Not only is the general trend in
both radical and molecule reactivity described, but the observed
barriers all fall on a single, relatively tight line. The major
deviation from this behavior is a tendency for barriers in larger
alkanes to lie above the predicted trend. Furthermore, the slope
of the correlation is much steeper than in the other cases,
consistent with a strongly coupled avoided curve crossing.
The experimental evidence tests the zero-order involvement

of the ionic surface. We conclude that ionic surfaces play the
dominant role in governing barrier heights in these reactions.
We turn now to the next level of detail to explore what happens
at higher order.

Far Field Perturbations

The data strongly support our hypothesis that the ionic surface
plays a controlling role in these reactions. However, we have
relied on ad hoc assumptions about both the characteristic
interaction distance and the evolution of both ground- and ionic-
state energies. We shall combine low-level electronic structure
calculations with an interaction analysis of the type described
in Fukui16 to constrain the interaction distance and to provide
further insight into the evolution of both the ground- and ionic-
state energies in the far field. We emphasize the far field, where
the evolution of the ground and excited states proceeds with
minimal overlap mixing between the reactants, because this
locks in the curve-crossing boundary conditions. We emphasize
both the ground and ionic states because the ground state, while
the magnitude of its energy change is small, ultimately limits
the interaction distance as it becomes repulsive.25 For the ionic
state we shall present a group of first-order perturbation terms
depending on the charge distribution and polarizability of the
vertically ionized reactants that cause the energy evolution to
deviate from the simple Coulombic potential we have used so
far.
Orbital Interactions. Though we shall focus on the far-

field interactions, we shall begin by discussing a molecular-
orbital picture of the atom-transfer problem itself. In Figure 7

we show molecular orbitals for the overall wave function at
three points along the reaction coordinate, considering only
orbitals generated from interactions of the singly occupied
orbitals of the three radicals (R, H, and X). We assume that
these SOMOs may be represented as a p, an s, and a p orbital,
respectively. This choice is purely illustrative. Orbitals for
separated reactants (ΨR ) and separated products (ΨP ) do not
involve any interaction between the molecule and radical. For
the separated species we show three configurations: the ground
state, the ionic state, and the molecular triplet state. Near the
transition state, however, the entire system constitutes a single
macromolecule, and the wave function (ΨT ) is more intricate.
The energies of the various molecular orbitals change rapidly

as the H atom moves from one radical to the other. This is
especially true for the orbitals into which the third of the three
unpaired electrons is forced by the Pauli exclusion principle.
The lowest lying molecular orbital has positive phase overlap
near the H atom for all three atomic orbitals comprising it. It is
highly delocalized and will be doubly occupied throughout the
hydrogen transfer. The third electron is forced into a higher
energy orbital. The second lowest lying orbital initially has
positive overlap between R and H and negative overlap between
H and X and corresponds to the ground state of RH+ X. This
orbital will be singly occupied during the beginning of the atom
transfer. The third lowest lying orbital is the reverse of the
second. As the atom exchange progresses, the second orbital
energy rises while the third decreases; their crossing point
approximately identifies the curve-crossing location. Therefore,
the two key configurations for the atom exchange, labeled
ground and promoted, differ only in which of the two partially
bonding orbitals is occupied.
How do we correlate the configurations of the transition state

with the configurations of the separated reactants? The

Figure 6. Observed barrier heights vs ionic curve-crossing energies.
Symbols identify reactions as in Figure 3. Only with this theory do
both molecular and radical reactivity progress along a common curve,
with some tendency for larger alkanes to fall above the trend.

Figure 7. Hydrogen atom transfer orbitals and electronic configurations
for three points during an abstraction reaction. Orbitals for separated
reactants and products (ΨR andΨP) are separate molecular orbitals,
while orbitals near the transition state (ΨT) span the system. Orbital
phase for the distant radicals is unimportant and thus not shown.
Configurations forΨR and ΨP are the ground state (G), with two
electrons in the molecular HOMO and one electron in the radical
SOMO, the ionic state (I ), with one electron in the molecular HOMO
and two electron in the radical SOMO, and the molecular triplet state
(T), with one electron promoted to the molecular LUMO.G andI are
the two lowest energy configurations when the reactants are proximate.
The sketch for the transition-state wave function (ΨT) depicts the
orbitals at two H atom positions, at the beginning and end of the atom
transfer, and connecting arrows show the evolution of the orbital
energies. Configurations forΨT all have two electrons in the lowest
energy MO. The third electron is forced into a higher energy orbital.
Initially, the ground state (G) has a single electron in an orbital with
positive overlap between R and H, and the promoted state (P) has a
single electron in an orbital with positive overlap between H and X
(this corresponds to the ionic configuration). As the hydrogen atom
moves from R to X, these two configurations cross. The transition state
is located at the crossing point.
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promoted configuration does not obviously correspond to either
the ionic or the triplet configuration of the separated reactants.
In fact, it consists of a mixture of these two configurations.
With extra electron density near the radical X, there is clearly
charge separation associated with the ionic configuration;
however, the antibonding nature of the R-H portion of the
orbital wave function is associated with the triplet configuration.
What enables us to identify this configuration is the asymptotic
matching with the configurations of the separated species; in
most cases the ionic configuration is lower in energy than the
triplet configuration once substantial oVerlap requires the
macromolecular basis set. Furthermore, the ionic configuration
energy varies much more than the triplet configuration from
reaction to reaction. Therefore, both the absolute magnitude
and the change in the energy of the promoted configuration will
be controlled by the ionic-state energy.
While one may perform a high-level configuration-interaction

calculation on the transition-state macromolecule to find the
transition-state geometry and energy, in practice this is impos-
sible for all but the simplest systems. Furthermore, it obscures
the essential simplicity of the problem. However, the physics
of the configuration interaction itself is straightforward, provided
one may constrain the boundary conditions. In this manner,
the far-field evolution of the configurations appropriate to the
separated reactants constrains and controls the overall problem.
This concept is directly related to the construction of a

reaction coordinate. Figure 8 is a cartoon of the coordinate we
apply, in which we break the reaction down into three stages
corresponding to the approach of reactants, the transfer of the
atom, and the separation of the products. Symmetry dictates
that the first and third stages are similar. The coordinate is
similar in concept to those presented earlier,25,38 except that it
is intentionally piecewise continuous. We confine all atomic
rearrangement to the second stage, which allows us to use the
approximate methods of Fukui with the greatest accuracy during
the stages I and III. We use different physics to calculate the
evolution of energies in stages I and III than we use in stage II,
and we apply asymptotic matching to generate a smooth
function.
Perturbation Treatment. To set up the initial-value problem

for the curve crossing, we must model the evolution of the

ground and electronic configurations while the reactants ap-
proach and the products separate. As long as the wave function
resemblesΨR, the energies are easy to calculate. This holds
true while the overlap between the reactant wave functions is
small; the reactants remain essentially undistorted while long-
range Coulombic and exchange forces (usually) increase the
ground-state energy (EG ) and substantially decrease the ionic-
state energy (EI ).
The ground-state energy evolves in the manner described by

Fukui:16

whereEK
G is the exchange energy andEQ

G is the Coulombic
energy. While the overlap between reactants is small, the
coulombic term may be reasonably approximated by reducing
electronic charges to the nuclei of each species.16

The ionic state initially lies at an energy (IP- EA) above
the ground state but drops dramatically due to the strong ion-
ion attraction:

where the ion-ion energy,Ei
I, is a simple charge-charge

attractive potentialEi
I ) e2/r, andEF,R,...

I encompasses various
near-field effects (ion charge distribution, anion polarizability,
etc.).39 The ionic-state energy drops until the overlap between
reactant wave functions becomes large.
To cast the problem in a useful perturbative form, we make

three zero-order assumptions: the ground-state Coulombic term
is small (EQ

G = 0), all transition states for a given radical,i,
form at roughly the same R-X distance,rT0i, and the ions act
as point charges. The first assumption is motivated by the
consideration of atom-molecule reactions, while the second is
based on extensive examination of radical-alkane reactions at
the Hartree-Fock level of theory, where for example most OH
transition states haverT0 ) 2.5 Å, giving an ionic interaction
energy of approximately 5.5 eV. Therefore, to zero order, we
have

These approximations, applied to both reactant and product ionic
states, lead to the predicted crossing heights shown in Figure
6.
There are two aspects to consider at first order: so far we

have neglected some contributions to both energies, and we have
assumed a fixed interaction distance for each radical,rT0i. As
a first-order perturbation, we add the neglected terms and also
consider the true transition-state interaction distance. The zero-
and first-order terms are shown graphically in Figure 9. The
interaction distance of the transition state on the ground state,
rT, differs from the nominalrT0, and the appropriate interaction
distance on the ionic state,rcc, differs fromrT because the centers
of charge of the virtual ionic state are not located on the R and
X atoms. GivenδrT ) rT - rT0 and δrcc ) rcc - rT0, the
perturbation energy on the ground state is

Figure 8. Approximate reaction coordinate for RH+ X f R + XH,
drawn on top of the ground-state surface for the R-H-X system. It
develops in three stages: (I) approach of RH and X with no geometric
distortion of either species, (II) transfer of H from R to X with R-X
distance constant, (III) departure of XH from R, with no relaxation.
The energy of the ground and ionic configurations along this coordinate
develop as shown in Figure 2, with the boundary between the stages
delineated by the dotted vertical lines.

EG ) EK
G + EQ

G (11)

EI ) (IP- EA) - Ei
I - EF, R,...

I (12)

E0
G ) EK

G(rT0) (13)

E0
I ) (IP- EA) - e2

rT0
(14)

E1
G )

∂EX
G

∂r
δrT + EQ

G(rT) (15)
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whereEQ
G(rT) ) EQ

G(rT0) + (∂EQ
G/∂r) δrT, while the perturbation

energy on the ionic state is

where EF
I (rcc) ) EF

I (rT0) + (∂EIF/∂r) δrcc and ER
I (rcc) )

ER
I (rT0) + (∂ER

I /∂r) δrcc. In eq 16, δIP is any difference
between the ionic surface at infinite separation and IP- EA,
including the role of ionic states other than the first ionic state,
EF
I (rcc) is the energy due to the near-field charge distribution of

the reactants (in the unoccupied, virtual, ionic states), and
ER
I (rcc) is the energy due to the polarizability of the reactants,

again as virtual ions. The polarizability of the virtual anion is
generally much greater than the polarizability of the virtual
cation, so we consider only the former.
The terms in this treatment are all easily calculated. Specif-

ically, the zero-order terms depend on easily measured properties
of the separated reactants, while the first-order perturbation terms
are either experimentally constrained or easily treated with low-
level (UHF/6-31G**) ab initio calculations. The radical-specific
interaction distances arising from this calculation are 2.3, 2.5,
2.5, 2.4, 2.8, and 3.0 Å for H, O, OH, F, Cl, and Br. One term
in particular,δIP, deserves attention. In many cases the first
ionization potential does not correspond to ionization out of a
molecular orbital that develops overlap with the radical during
the reaction. An example is ionization of the various radical-
hydride product species, which serve as the electron donor in
the reverse reaction. In all cases other than H2, the HOMO is
a lone pair that plays no role in the reaction. The appropriate
IP correlates with an orbital containing significant electron
density in the breaking bond. This correction also applies to
the larger alkanes, where the HOMO electron density is largely
along the carbon backbone.
Applying these first-order terms to the test set of reactions,

we get the result displayed in Figure 10. The values are listed
in the Appendix. The perturbation treatment has clearly
improved the agreement between predicted curve-crossing
energy and measured barrier heights. Now a single, nearly
straight line describes the relationship for all reactions other
than the H atom reactions, which lie slightly above the general
trend. These include reactions spanning the entire space

described in Figure 3. The improvement with the higher order
perturbation treatment is significant in itself, as it indicates that
the data behave in a manner consistent with the theory. Finally,
the slope (0.3) is consistent with strong coupling, though we
expect the actual slope to change at higher order.
The two most significant terms are the charge distribution

(dipole) term, which tends to steepen the curve by lowering
the ionic-surface height for the smaller alkanes, and the IP term,
which largely removes the curvature seen in Figure 6 for the
larger alkanes. A more sophisticated treatment would include
multiple ionic configurations in the larger alkanes, where
degeneracy and a succession of closely spaced molecular orbitals
complicate the problem.
One reaction in particular deserves attention. We have

included the reaction ethyl+ HBr f ethane+ Br (a cyan circle
in a square in the figures). There is currently some controversy
about the experimental barrier for this reaction,40,41with some
experiments showing a significantly negative activation energy
and one a small positive activation energy. While we cannot
resolve that discrepancy here, our theory does predict that the
barrier should be quite low. In this case, the barrier is regulated
by the ionic properties of the products and not the reactants.
Specifically, the high electron affinity of Br makes the product
ionic surface very low. This is an interesting class of reactions,
with low crossings very late in the reaction coordinate, where
the actual energy maximum may not be at the crossing point,
or if the ionic-state energy is low enough, a stable intermediate
could form.

Conclusions

We have shown that a configuration interaction between the
ionic excited states and the ground state controls barrier heights
in a large set of radical-molecule reactions. Other factors often
cited as controlling influences, such as reaction enthalpy or the
splitting between bonding and nonbonding configurations (the
singlet-triplet gap), may play a role in determining the absolute
barrier height, but the dominant property is the ionic-surface
height (IP- EA).
In previous work,23we have discussed the interaction between

the ionic and ground states as a stabilization of an intrinsic, or

Figure 9. Perturbation terms to the ionic- and ground-state energies
as the reactants approach. The ground-state energy (E0

G) is influenced
by Coulombic interactions (EQ

G(rT)). The ionic-state energy (E0
I ) is

lowered by interactions with the charge distribution on each ion
(EF

I (rcc)) and by the polarizability of the radical anion (ER
I (rcc)). The

initial ionic-state energy may be higher than the experimental IP-
EA because the appropriate orbital to ionize may not be the HOMO
(δIPn).

E1
I ) δIP+

∂Ei
I

∂r
δrcc + EF

I (rcc) + ER
I (rcc) (16)

Figure 10. Observed barrier heights vs first-order ionic curve-crossing
energies. Symbols identify reactions as in Figure 3. By accounting for
specific Coulombic interactions of the reactants as well as the ionization
potential of orbitals actually involved in the reaction, much of the
deviation from a common trend seen in Figure 6 is removed.
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adiabatic, barrier by the overlying ionic state. This perspective
is not far removed from that outlined by Shaik;20 the intrinsic
barrier can be viewed as a covalent barrier formed by the
interaction of covalent electronic states (i.e., the singlet-triplet
splitting), and the ionic surface can then be viewed as a
perturbing agent responsible for supressing that adiabatic barrier.
The strong correlation between observed barriers and the ionic
properties of the reactants, operating as it does in many different
radical-molecule systems, would then depend on a more or
less constant adiabatic barrier for its coherence. Viewed in this
context, there are two unifying questions to the overall
problem: what controls the adiabatic barrier height, and what
causes the large excursions of the observed barrier from the
adiabatic barrier? The data shown in Figure 5 and Figure 6
suggest an answer to these questions. The adiabatic barrier for
the reactions presented here is nearly constant, while the ionic
states vary widely in energy, as do the observed barriers. While
this formulation is consistent, it hides the essential controlling
role of the ionic surface in these and many other reactions. The
available excited states of like spin symmetry should be
considered as a whole, once sufficient overlap forces a config-
uration interaction among them. We have shown that the ionic
state is generally the lower energy state at this point, as well as
being far more variable from system to system. The ionic curve-
crossing model is therefore the appropriate zero-order model
of barrier-height control for these systems.
Why do we care? Ultimately, a simple theory such as this

should provide chemical insight. It is common, almost second
nature, to assume that reaction enthalpy plays a dominant role
in reactivity. Aside from the obvious constraint that the enthalpy
provides a minimum barrier height, this assumption is not
correct. More sophisticated curve-crossing models whose zero-
order terms depend on the singlet-triplet gap can only describe
radical reactivity by including a large perturbation from the ionic
surface. This obscures the simplicity of what the data show
us. The theory we present here shows clearly the observed
progression of barriers and demonstrates the critical role of
radical electron affinity in establishing radical reactivity. It is
vital to have such conceptual theories. Agreement between
experiments and high-level calculations is a triumph in the cases
where it has been realized, but it is critical that a context be
developed in which one can understand the simplicity of the
physics governing the interactions, a context that stands up to
the test of observations.
We wish to understand more complicated systems than the

simple hydrogen transfer we have explored here. For instance,
we need to understand why some reactions are direct and some
are indirect. The covalent curve-crossing model and our ionic

curve-crossing model may provide different insights into this
issue; in all likelihood, there are domains in which one provides
the correct first-order coupling scheme and other domains where
the other theory applies. The two converge at higher order,
where one considers the full configuration interaction. For the
large class of radical-molecule reactions considered here, the
most succinct first-order rule is that the lowest lying electronic
excited state with the proper spin symmetry for either the
reactants or products ultimately exerts the strongest control on
the barrier height.
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Appendix

Data. We have searched the literature extensively for
temperature-dependent data on radical-alkane reactions with
OH, O, H, and Cl. Data for OH reactions are taken from
Atkinson42 and references therein and more recent studies.43,44

Our data-fitting procedure is discussed more completely in a
companion paper.44 Data for O atom reactions are from
Herron45 and references therein, data for H atom reactions are
from NIST46 and references therein, and data for Cl atom
reactions are from JPL47 and references therein. In addition,
heats of formation and ionization energies are from NIST.48

To treat the curvature in Arrhenius plots caused by the
transformation of rotations in the individual reactants into loose
vibrations at the transition state, we use a modified Arrhenius
form that explicitly incorporates the functional form of the
rotational and vibrational modes, consistent with transition-state
theory. We neglect tunneling effects. This is fully described
in the companion paper.44 For atom-molecule reactions we
use the form

while for diatomic radical-molecule reactions we use the form

TABLE 1: Modified Arrhenius Barrier Heights (in K)

alkane OH O H

methane 1779( 10 3498( 10 5026( 12
ethane 1025( 10 2794( 7 4746( 5
propane 616( 5 3230( 9
n-butane 454( 6 2138( 9
2-mepropane 257( 11
n-pentane 414( 18 2002( 4
n-hexane 284( 53
cyclopentane 253(69 1889( 8
cyclohexane 227( 43 2088( 7
cycloheptane 256( 44 1880( 12
cyclooctane 270( 62

alkane F Cl Br

methane 198(1 1340(1
ethane 256(1 199(3

TABLE 2: Preexponentials (10-10 Kn cm3 molecule-1 s-1)

alkane OHa Ob Hc

methane 3.77( 0.14 0.26( 0.14 4.06( 2.09
ethane 11.63( 0.45 1.20( 0.49 33.17( 8.60
propane 13.18( 0.28 9.39( 4.32
n-butane 16.64( 0.37 3.57( 1.87
2-mepropane 7.49( 0.29
n-pentane 24.64( 1.51 5.55( 1.38
n-hexane 21.01( 3.39
cyclopentane 19.66( 4.13 7.40( 2.88
cyclohexane 23.65( 3.11 15.21( 5.80
cycloheptane 42.49( 5.86 15.84( 9.39
cyclooctane 49.79( 10.02

alkane F Cl Br

methane 13.07( 1.47 1.15( 0.11
ethane 19.84( 1.93 0.16( 0.03

a ν1 ) 280 cm-1, ν2 ) 500 cm-1. b ν1 ) 300 cm-1. c ν1 ) 600 cm-1.
d ν1 ) 300 cm-1. e ν1 ) 400 cm-1. f ν1 ) 400 cm-1.

k(T) ) Be-Ea/T

(T1/2(1- e-1.44ν1/T)2)
(17)
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In each case we assume that modes corresponding to bending
vibrations of the heavy radical are degenerate. While this form
is strictly appropriate only to single-channel reactions, we fit
all of the available data with it, with excellent results. Both
tunneling and multiple channels should be included in higher
level treatments, such as the recent work on propane+ OH
branching.49 However, the fitting procedure we use yields
barriers unbiased by temperature (little change results by
excluding high- or low-temperature data), so the effect of
tunneling will be to generally raise the experimental barrier
heights but not to alter the trends we analyze here.
While it is possible, in theory, to fit data for all of the free

parameters in these functions, in practice this is imprudent. We
constrain the frequencies in these functions with results from
low-level ab initio calculations (UHF/6-31G**). Also, while
we expect that the frequencies evolve along with the barrier
heights in a given radical-alkane series, we do not wish to bias
our data with any trends in the ab initio results. We therefore
use a single set of frequencies for each radical. The resulting
barrier heights (in K) are summarized in Table 1, while the
preexponential (B) factors are summarized in Table 2. Note

that we list the ethyl+ HBr reaction as the reverse (Br+ ethane)
in the table to facilitate the presentation.
Perturbation Terms. The perturbation terms described by

eq 16 are shown in Table 3 for the forward and reverse reactions
treated in this paper. These terms are calculated by locating
the transition state at a low level of ab initio theory (UHF/6-
31G**) to find the interaction distance and then using charge
distributions for the undistorted reactants computed at the same
level of theory. The largest term (when it is nonzero) is the
difference between the first ionization potential and the ioniza-
tion potential appropriate to the reactive molecular orbital (δIP).
Corrections for the difference between the true center of charge
interaction distance and the zero-order 2.5 Å distance ((∂E/∂r)
δr) as well as for the charge distribution of the reactants (EF

I )
are of similar magnitude. The effect of polarizability
(ER

I ) is smaller but significant. The final ionic height (E1
I ) is

shown in the last column. Note that most reactions are strongly
asymmetric, with the reactant ionic surface much lower than
the product surface. The exception is the HBr+ ethyl reaction,
where the product surface is much lower in energy.
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